本报讯(记者 郜阳)7日,上海人工智能实验室联合中国科学技术大学、上海交通大学、南京信息工程大学、中国科学院大气物理研究所及上海中心气象台,发布全球中期天气预报大AI模型“风乌”。
基于多模态和多任务深度学习方法构建,AI大模型“风乌”仅需30秒即可在高分辨率上对核心大气变量进行超过10天的有效预报,在效率上大幅优于传统模型。
据介绍,“风乌”取名自秦汉时期的“相风铜乌”,是世界上最早的测风设备。
高精度 长时效 高效率
在气象气候预报任务中,全球中期天气预报是最重要的预测任务之一,它以预测未来14天内的大气系统状态为目标,不仅是当前广泛使用的集成天气预测系统的基础,也是区域性数值天气预报系统的背景场和边界条件。
过去数十年间,全球中期天气预报的有效性每十年才提高一天,难以满足社会和经济的发展需求。随着深度学习技术和框架的不断成熟,以ChatGPT、“书生”(Intern)为代表的人工智能大模型,在自然语言和视觉等领域展示出卓越的能力,人工智能亦为地球科学等领域带来全新的研究思路。
“‘风乌’提供了一个强大有效的全球中期天气预报的AI框架,其领先性体现在预报精度、预报时效和资源效率三方面。”上海人工智能实验室青年科学家白磊介绍。
在预报精度方面,相比DeepMind的GraphCast,“风乌”的10天预报误差降低10.87%,而相比于传统的物理模型,其误差降低19.4%。此前,全球范围内最好的物理模型HRES有效预报时长最大为8.5天,而“风乌”基于再分析数据达到了10.75天。在资源效率方面,现有物理模型往往运行在超级计算机上,而“风乌”AI大模型仅需单GPU便可运行,仅需30秒即可生成未来10天全球高精度预报结果。
实践证明,将观测与数值预报和人工智能相结合,可有效提升数值预报的准确性。“风乌”首次将全球气象预报的有效性提高到10.75天,具有很大的业务应用价值。
深度学习驱动地球科学发展
记者了解到,上海人工智能实验室“AI for Earth联合团队”提出了一种基于多模态多任务的深度学习方法,用于构建AI天气预报模型,从而实现对全球中期天气进行快速、准确预报。
由于不需要通过复杂的物理系统仿真,AI气象预报模型突破了传统预报方法的计算瓶颈,因此能够高效地进行预报和集成。同时,AI对气象数据关系的强大拟合能力,使其有潜力突破传统数值模式预报中的性能瓶颈。
在AI模型的设计和训练过程中,研究团队发现,在学习过程中,多个大气变量在优化中存在相互影响,且可以看作多任务学习问题;大气数据具有高分辨率高维度大体量的特征,导致模型多步天气预测结果难以直接被优化。
“风乌”采用多模态神经网络和多任务自动均衡权重,解决多种大气变量表征和相互影响的问题。其针对的大气变量包括:位势、湿度、纬向风速、经向风速、温度以及地表等。“风乌”将这些大气变量看作多模态信息,使用多模态网络结构可以更好地处理这些信息。
研究团队从多任务问题的角度出发,自动学习每个大气变量的重要性,使得多个大气变量之间能够更好地协同优化。为了优化“风乌”的多步预测结果,研究团队提出了“缓存回放”策略,减少自回归预测误差,提高长期预测的性能。
未来,“风乌”AI气象大模型可与传统的物理模型形成互补,凭借其卓越的性能和精度,为生产生活提供更准确、更实用的天气预报信息,助力天气预报数字化,为农林牧渔、航空航海等各行业及公共安全保障提供有力的支持。
据悉,上海人工智能实验室“AI for Earth联合团队”还将把人工智能方法应用到更广泛的气象、环境、天文、地质等地球科学问题研究中,助力“碳中和”、防灾减灾、能源安全等重大需求。