2024年12月22日 星期日
广告 这个国庆节,祝融号也放假 有机催化,造福人类
第5版:综合新闻 2021-10-07
2021年诺贝尔化学奖回归传统化学

有机催化,造福人类

本杰明·利斯特Benjamin List

大卫·麦克米伦 David W.C.MacMillan

北京时间昨天,2021年诺贝尔化学奖揭晓。德国科学家本杰明·利斯特(Benjamin List)和美国科学家大卫·麦克米伦(David W.C.MacMillan)因在“不对称有机催化”上作出的突出贡献而获奖。

诺贝尔化学奖一度被认为是“理综奖”——之前10年里,诺贝尔化学奖有4次颁给了生命科学研究,还有2次给了主要用于生物学研究的超分辨率荧光显微镜和冷冻电镜。此次奖励有机小分子不对称催化,被认为是回归到认可传统化学。

开发第三类催化剂

化学是一门创造物质的科学,最重要的一环是创造分子。华东师范大学化学与分子工程学院教授、世界顶尖科学家协会青科委员会委员姜雪峰告诉记者,创造分子的关键在催化上。“我们开门的时候需要一把钥匙,催化剂就像这把钥匙一样。”

催化剂可以控制、加速化学反应,而不会成为最终产物的一部分。我们的身体中也包含了数千种催化剂——酶,它们可以帮助产生生命所必需的分子。长久以来,研究人员认为催化剂只有两大类:酶和金属。而本杰明·利斯特与大卫·麦克米伦获奖,是因为两人在2000年提出和广泛建立了第三类催化模式——他们发现有机小分子的催化更加仿生,利用生命体中的某一类手性氨基酸,可以催化涉及烯胺亚胺的众多化学反应,创造很多分子,并且这些分子以手性立体的方式建立起来——这种被称为不对称有机催化的新型催化模式自此蓬勃发展了起来。

这里又出现了一个新的概念:手性。手性特征,如同左手与右手的关系,可以镜面重合却无法在空间上完整重叠,天然的20个氨基酸中有19个具有手性特征。在两位科学家之前,有机小分子不对称催化尽管有零星的发展,但始终仅作为限定的化学反应。

直到2000年,这一领域才由本杰明·利斯特和大卫·麦克米伦的两项重要突破塑造了雏形:前者与他的已故导师、著名合成化学家卡洛斯·巴尔巴斯发现了首例由有机小分子脯氨酸经由烯胺中间体介导的不对称Aldol反应;后者发现了首例手性二级胺经由亚胺正离子实现的不对称Diels-Alder反应。“诺贝尔奖不颁发给已故科学家。如果巴尔巴斯还在世的话,相信也能在今年诺贝尔化学奖的名单上。”姜雪峰表示。

高效构建药物分子

再说回手性。或许有人听说过上世纪60年代西方的“反应停事件”。当时作为抗妊娠药物被大力推广的沙利度胺,实际上是手性分子——其中右手分子具有抑制妊娠反应活性,而左手分子却对胎儿有致畸性。

在有机催化中,当分子构建时,经常会出现形成手性立体分子的情形,但化学家通常只会需要其中一种,尤其是在医药生产中会做出这种选择。“从本世纪开始,有机催化剂就在飞速地发展。有赖于两人的发现,后来者们可以更有效地生产出医药制造所需的分子,造福人类。”姜雪峰说。

在“有机催化”概念建立后,科学家们也逐渐感受到了其“后来居上”的竞争力——“有机小分子催化”一般而言对水、氧不敏感,使用、存储及放大的技术难度较低;其核心骨架一般来源于天然存在的生源途径,衍生应用的成本较低;此外,小分子一般较为低毒,具有天然的环境友好属性,分离难度及成本较低,特别满足药物化学家的使用需求。

“事实上,我国不少科学家也都师从今年的两位诺贝尔化学奖得主。他们在归国后,都沿着老师的路发扬光大,在手性分子领域同样开展了不少开拓性研究工作。”姜雪峰告诉记者。

回归传统化学

诺贝尔化学奖奖励过很多传统的化学家,也奖励了不少与化学交叉的工作。此次授予有机小分子不对称催化,也让姜雪峰这样在化学这一基础学科中奋斗的科研工作者感受到了极大的激励。

“两位大师的得奖实至名归。我也非常高兴,因为诺贝尔化学奖回归了化学的‘核心区’——构建分子。”姜雪峰感叹。他同时表示,诺贝尔化学奖有时青睐材料、有时偏好生物,有时还投入医学的怀抱,这说明化学在不断进步。“就好像一棵大树一样,只有根深蒂固,才有可能枝繁叶茂。让上面的更多的‘枝芽’伸展到不同的领域展现解决问题的能力,甚至是‘卡脖子’的问题。”他说,诺贝尔化学奖的“理综”属性也表明化学的学科宽广性和在人类社会发展中的综合性。“通过‘根茎’的突破,带来‘枝芽’的繁茂,我想每一位有机化学人都会感到自豪。”

姜雪峰也透露,不对称有机催化中,所需要催化剂的量还比较大。而在工业生产中,降低成本则需要控制催化剂的用量。为此,科学家们仍在不断努力,也希望基础科学的突破与工业化生产间能擦出更亮的火花。

本报记者 郜阳

放大

缩小

上一版

下一版

下载

读报纸首页